K - Nearest Neighborhood based Music Recommendation System

نویسندگان

  • Sivabalan Narayanan
  • Vivek Goswami
چکیده

A. Introduction Recommendation systems are an active topic in research and industry. The technique of collaborative filtering is especially successful in generating personalized recommendations. More than a decade of research has resulted in numerous algorithms, out of which, we have chosen K-Nearest Neighborhood (K-NN) model to predict the ratings for the songs. This model is an item-based algorithm which looks for neighbors among items (songs in this context) unlike user-based algorithms which look for neighbors among users. Our objectives for this project are as follows: 1. To improve prediction results using KNN algorithm. 2. Reduce overall execution time of KNN calculations by introducing parallelization 3. Find the optimum value of K(where K is the number of most similar neighbors chosen to predict the rating for a song for a given user) 4. Improve performance further by using multi cores.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complex Network Approach for Collaborative Recommendation

Collaborative filtering (CF) is the most widely used and successful approach for personalized service recommendations. Among the collaborative recommendation approaches, neighborhood based approaches enjoy a huge amount of popularity, due to their simplicity, justifiability, efficiency and stability. Neighborhood based collaborative filtering approach finds K nearest neighbors to an active user...

متن کامل

Improving K-nearest-neighborhood based Collaborative Filtering via Similarity Support

Collaborative Filtering (CF) is the most popular choice when implementing personalized recommender systems. A classical approach to CF is based on K-nearest-neighborhood (KNN) model, where the precondition for making recommendations is the KNN construction for involved entities. However, when building KNN sets, there exits the dilemma to decide the value of K --a small value will lead to poor r...

متن کامل

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

Mutual proximity graphs for improved reachability in music recommendation

This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting...

متن کامل

Improving Driver Alertness through Music Selection Using a Mobile EEG to Detect Brainwaves

Driving safety has become a global topic of discussion with the recent development of the Smart Car concept. Many of the current car safety monitoring systems are based on image discrimination techniques, such as sensing the vehicle drifting from the main road, or changes in the driver's facial expressions. However, these techniques are either too simplistic or have a low success rate as image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013